Superstability of generalized cauchy functional equations
نویسندگان
چکیده
منابع مشابه
On Generalized Cauchy and Pexider Functional Equations over a Field
Let lK be a commutative field and (P, +) be a uniquely 2-divisible group (not necessarily abelian). We characterize all functions T: IK -+ P such that the Cauchy difference T(s+ t) T(t) T(s) depends only on the product st for all s, t E ~{. Further, we apply this result to describe solutions of the functional equation F(s + t) = K(st) 0 H(s) 0 G(t), where the unknown functions F, K, H, G map th...
متن کاملGeneralized Cauchy Difference Equations. Ii
The main result is an improvement of previous results on the equation f(x) + f(y)− f(x+ y) = g[φ(x) + φ(y)− φ(x+ y)] for a given function φ. We find its general solution assuming only continuous differentiability and local nonlinearity of φ. We also provide new results about the more general equation f(x) + f(y)− f(x+ y) = g(H(x, y)) for a given function H. Previous uniqueness results required ...
متن کاملStability of Generalized Additive Cauchy Equations
A familiar functional equation f(ax+b) = cf(x) will be solved in the class of functions f : R → R. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f ( a1x1+···+amxm+x0 )= m ∑ i=1 bif ( ai1x1+···+aimxm ) in connection with the question of Rassias and Tabor.
متن کاملOn Cauchy-type functional equations
LetG be a Hausdorff topological locally compact group. LetM(G) denote the Banach algebra of all complex and bounded measures on G. For all integers n ≥ 1 and all μ ∈ M(G), we consider the functional equations ∫ G f(xty)dμ(t) = ∑n i=1gi(x)hi(y), x,y ∈ G, where the functions f , {gi}, {hi}: G → C to be determined are bounded and continuous functions on G. We show how the solutions of these equati...
متن کاملNotes on the Superstability of D’alembert Type Functional Equations
In this paper we will investigate the superstability of the generalized d’Alembert type functional equations Pm i=1 f(x + σ i(y)) = kg(x)f(y) and Pm i=1 f(x + σ i(y)) = kf(x)g(y).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2011
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2011-23